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Training a low-inertia robot to take an optimum path by
applying an evolutionary algorithm to the attributes of a
Continuous Time Recurrent Neural Network

Introduction

| devised this problem in order to learn about Continuous Time Recurrent Neural Networks and their
training using an evolutionary approach. The basic challenge | chose was for a robot to learn how to
navigate towards a target while optimising its route to be the most efficient.

Although | had some success, it was limited. In summary, the exercise showed me that the number
of variables to optimize in a neural net of even a small size makes for an extremely large “problem
space”, and an evolutionary approach may take extremely long to find a suitable solution, if it can
find one at all.

Problem definition
The problem | set out to solve was as follows.

1. Atwo-wheeled robot of negligible inertia is used. View from above;

2. The wheels are on either side of the robot and their speed is controlled by two motors, ane for
each wheel. The wheel speeds are related to the inputs to the motors as follows:

Wy, X tanh [ where w,,, is the angular velocity of wheel k, and Iy is the input to

the motor for wheel k.

3. Since the velocity of the robot at the centre of each wheel (v, ) is proportional to the angular
velocity of the wheel, we can define v, using:

Vv = Vmaxtanhly where v,,,_is the velocity (m/s) of the robot at the centre of wheel k,
and V., 15 the maximum possible speed of the robot.

4. The robot is initially positioned in a 2-dimensional landscape at (0, 0) facing “East” (parallel to
the x-axis). The robot must move to a target location at some point (x, y).

5. The robot is powered by a battery. Energy is depleted from the battery in three ways:

a] Constant power usage. Energy is depleted at a constant rate, representing constant power
usage by, for example, the control circuits.

b) Distance dependent power usage. Energy is depleted for each unit of distance travelled by
the robot, representing the energy needed to move the robot.

c) Energy sink(s) in the landscape. The energy sinks are entirely artificial devices placed into the
landscape to increase the difficulty for the robot to find the optimum route to target.




Version 1.0 Jon Anwyl

b.

8.

Without any energy sinks, the lowest energy route is obviously a straight line to the target.

Each energy sink is located at a point on the landscape and “drains” energy from the robot
according to the relationship

dz001lm: e = Pfrdi where e = energy drain rate in Watts, P is a

constant and represents the “strength” of the
d<001m: e=P/ . =10000P .
fD-Dl"- energy sink, and d is the distance in metres
between energy sink and centre of the robot.

The robot should learn to find an optimum path for varying “landscapes”, each involving a target

and 0, 1 or 2 energy sinks. The optimum path is defined as one that uses the least energy (i.e.,
depletes the battery the least.)

The robot has sensors that are able to detect the distance and direction of the target, and also
the distance, direction and strength of any energy sinks. The sensors are also able to
differentiate between two energy sinks so that the information corresponding to one sink is not
confused with the information corresponding to the other. The sensor signals available to the
controller network are therefore:

Ta rgét Energy sink 1 Energy sink 2
Direction Direction Direction EETEETET
Distance Distance Distance

Strength Strength

Directions are all measured relative to the forward direction of the robot in radians, going from 0
to m anti-clockwise, and 0 to —n clockwise. | chose this scale instead of 0 to 2n so as to avoid a
discontinuity at the “straight ahead” position. | thought this might lead to learning difficulties as
the direction to target might jump frequently between ~0 and ~2n as the target moved relatively
from one side of the “straight ahead” line to the other.

Distance is measured in metres, and energy sink strength is the value of the constant P for each
sink.

The landscapes are all of similar size in that the original distance between robot and target does
not vary to an extreme degree. The longest original distance is never more than 200% of the
shortest original distance. However the original direction to target is completely random. Energy
sink strengths remain constant during a simulation but may vary from one sink to another.

Robot dynamics

The robot is assumed to have negligible inertia so as to keep the simulation simple. As stated above
the robot velocity at the centre of each wheel is given by:

V“.k o 1|""r|:'1'|.'+.:-t tanh [lc

where v, is the velocity (m/s) of the robot at the centre of wheel k,
and V., is the maximum possible speed of the robot.

T




Version 1_.D Jon Anwyl

Thus the following equations are used to describe the motion of the robot using Euler integration:

where vy is the speed of the robot (m/s) in the direction
Vg = 1& (Vopy T Vi) perpendicular to the wheels’ axes and v,,_is the velocity
{m/s) of the robot at the centre of wheel k.

S 1;;2 s where wy is the Engui.:ar uelr:}cityf of the robot [rfn:lfs}

I 2 1 measured anti-clockwise, and r is the robot radius.
where i is the number of time steps since simulation start,
8; is the angle in radians between the robot forward
direction and the x-axis, and dt is a suitably small time
interval between each time step.

¥i + Vg, sinB; dt

(xi-l-l) X ‘u’};.l Cas Hi dt
Hi + l’.l.‘.IH_idt

Network controller definition

The robot controller is a Continuous Time Recurrent Neural Network (CTRNN) of N nodes, where the
net dynamics are governed by the equation for each node i:

dy, N where y; is the value of the node i, wy; is the weight of
T~ =N e - ijiﬁ(}rj + ﬂ;) + [ the connection from node j to node i, B; is the bias at
i=1 node j, tj is the time constant of node i, and |; is the

value of the input at node i.

The values of the nodes over time are calculated using Euler integration so that;

5t N where ¥i, is the value of node 1| after n
Y B hor=kalipt ) wio(y;+ 8;) + 1, time steps each of length &t seconds.
T A
i )

Although | coded the network to allow for flexible net sizes, in this exercise | only used a network of
11 nodes, as follows:

=
]
cL
™

| Input Use of value
- Taken as the signal to the motor wheel 1

- Taken as the signal to the motor wheel 2
Target direction relative to robot direction | --

| Target distance from robot -

Robot forward velnci_t"‘,,r --

Sink 1 direction relative to robot direction
Sink 1 distance from robot -
Sink 1 strength P =
| Sink 2 _|:|_Er'E_'CII'ﬂ-n relative to robot direction
Sink 2 distance from robot --

| Sink 2 strength -

lo|m|a|n| &M=

[
=
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However | also wrote the code so that nodes could effectively be cut out or “isolated” from the rest
of the network by fixing all weights to or from an isolated node to zero. This meant that | could
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effectively reduce the number of nodes when possible. For example, if training the robot simply to
reach a target position in landscapes without any energy sinks, | would isolate nodes 6 to 11.

(In the end, node 5 was isolated in all cases. This node was a hangover from an earlier version of
model in which an element of robot energy depletion depended on speed rather than distance
travelled.)

Although the code allowed for varying time constants and biases, in all training | fixed the time
constants to 1 and biases to 0.

Training approach

Genotype definition
The trainer uses an evolutionary algorithm to attempt to find an optimum set of parameters for the
CTRNN. Thus the "genotype” is the set of parameters that defines the CTRNN, being:

o  Weights — defining the strength of connections between nodes. For a CTRNN of n nodes there
are n’ weights.

e Biases — defining the bias value at each node.

e Time constants — defining the time constant value at each node.

Thus for a network of 11 nodes the genotype will consist of 143 genes (11 * 11 + 11 + 11}. However
there was always at least one node “isolated” (node 5) and in many instances more were isolated.
When isolated, all the associated weights for that node are set at zero and remain immutable.

In addition, although the code allowed otherwise, | chose to make all biases immutable with a value
of 0, and all time constants immutable with a value of 1. Thus the longest genotype would contain
100 genes (10 * 10 + 0 + 0), and it was often significantly shorter depending on the parameters for
the particular training exercise.

Discussion

| am unsure whether fixing the biases to zero was an unwise constraint. | wonder whether the fact
that the inputs were not rigorously normalised might have created problems for the learner and this
might have been offset by biases. However this is speculation and not thought through — more of a
note to myself to think through the effect of biases in this scenario.

Fitness function

For each “train” or "learn” a set of landscapes was defined, each with a target and 0, 1 or 2 energy
sinks. The goal was to evolve a CTRNN that could, for each landscape, successfully guide the robot to
the target using the optimum path (i.e., the path requiring the least energy).

When evaluating the fitness of an individual CTRNN, a simulation was run for each landscape and the
combined results were used to evaluate the CTRNN's fitness. Each simulation stopped when one of
the following two conditions were met:

* The robot battery level reached 0. This was recorded as a "failure”.

e The robot made it to within a certain (short) distance of the target before fully depleting the
battery. This was recorded as a "success”.

The first component of the fitness function was therefore the % of successes. If the robot achieved
success for three landscapes out of 4, say, then the success rate was 75%.
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However it seemed likely that there would be many instances where two individuals could achieve
the same success rate, but one has obviously out-performed the other.

For example, let us imagine that two individuals have both achieved 3 successes in a 4-landscape
problem. However, in the case of one individual the robot used considerably less energy to reach the
target in each landscape.

Similarly, let us imagine another scenario where both individuals have failed to achieve any
successes. And this time in the evaluations of one individual the robot ran out of battery not far from
the target for all four landscapes, while in the evaluations of the other individual, the robot headed
off in completely the wrong direction in each landscape and finished a long way from the target.

To allow differentiation in these scenarios, a “fitness score” for each simulation was also used,
calculated as:

1. If a success, the amount of energy remaining in the battery at the end of the simulation.
2. If a failure, the distance between robot and target at the end of the simulation multiplied by -1.
This meant that:

* Successes always had a positive fitness score, and those that used less energy had a higher
score.

¢ Failures always had a negative fitness score, and those that ended up further from the target
had a lower (i.e., more negative) score.

The simulation fitness scores were then averaged over the landscapes for each individual to give the
individual’s overall fithess score.

When comparing two individuals performance, the “winner” was chosen as follows:
1. If one individual has more successes than the other, then that individual is the winner.

2. If both have the same number of successes, then the winner is the individual with the higher
fitness score.

Evolutionary learning process

| used the “microbial” approach described in (Harvey, 1996) to replicate a generational approach.
For each "train”, the steps were as follows:

s Define landscape(s). Landscapes were defined, each with a target and 0, 1 or 2 energy sinks.

* Generate initial population. Each individual’s attributes were generated randomly within
constraints to ensure that the individuals have a reasonable chance of success. The parameters
for the initial population were as follows:

" Population size 20

Mutable weights | Random choice in the range -5t0 5
Weighis o | o 1At nodes e

R = = | N .
Time constants _ |
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* Select individuals and run tournaments. | typically ran a minimum of 20 generations and would
run up to 100 generations to check whether longer trains would give a better result. Thus the
number of tournaments varied between 400 and 1,000. For each tournament:

— One individual was selected at random.

— A second individual was selected at random within the “deme” of the first individual. Given
the population size of 20 | used a deme of 5.

— A simulation was run for each landscape for each individual, the results were compared and
the “winner” was identified using the fitness function as described above.

The loser’s genes were replaced with the winner's genes on a random basis: each of the
loser's genes was replaced with 50% probability.

— All of the loser’s genes were mutated by X, where X is the larger of 0.01 and 1% of the
gene's current value. In other words the mutation rate was 1%, unless the gene’s current
value was < 1, in which case the mutation rate was 20.01. (This approach was used to ensure
that where a gene value was initially set to zero or a very small value, mutation would not be
zero or negligible.)

Balance between randomness and evolution (through mutation and recombination)

The evolutionary approach described above places certain constraints on the extent to which the
“problem space” is explored. As is the case with any evolutionary algorithm, the initial randomiy-
generated population represents a haphazard "guess” at solutions = each a point in the “problem
space” defined by the values of the genes for that individual / solution. The evolutionary algorithm
then attempts to find “better” solutions by “moving” from those initial start-points to other points in
the problem space using two methods:

1. Mutation. This represents a small change, in other words a movement of a small “distance” in
the problem space.

2. Recombination. This can lead to a big change, in other words a movement of considerable
“distance” in problem space.

However, it must be remembered that recombination does not introduce any new genes into the
gene pool. It merely mixes up those that are already there. In other words, mutation is the only true
“exploration” of the problem space. We could instead think of recombination as a way of increasing
the number of initial “guesses” at solutions — an initial population of twenty individuals represents
not just twenty guesses, but a much higher number being the various ways those individuals are
recombined during the process. We cannot know how many more individuals there are as a result of
recombination, because recombination is a probabilistic process, but we can know that a) there are
more, and b) there are not more than a certain finite number. Although it is not the case here, if the
recombination were fixed as a "crossover” halfway through the genotype, meaning that under
crossover the first half of individual A replaced the first half of individual B [and vice versa), then the
maximum number of combinations possible in a population of n is calculated as n”. (There are two
half-genotypes, and there are n possible values for each half-genotype.)

Through initial experimentation, | observed that increasing the number of generations beyond a
certain point never seemed to bring any benefit. In other words, if there was an adequate solution
to be found in the regions of the problem space defined by the initial population, that solution was
found reasonably quickly. Continuing to "crawl” very small distances through the problem space
from the start-points (not just the initial individuals but combinations thereof) was unlikely to find a
far better solution — rather only very small improvements would be found.
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As a result, | decided to introduce more variation into the gene pool. This was done by running many
“trains” of, say, 20 generations each, with each population being randomly generated at the
beginning of that train. However the best performing individual of the last train would also be
included in the initial population of the next train.

Discussion

Recombination in this exercise was set to happen through each gene being copied from tournament
winner to tournament loser using a 50% probability. In effect this introduces much more variability
that the “fixed” crossover point model described above. Instead of there being only n° combinations
possible, there is a maximum of n" possible combinations. With a genotype containing just 10 genes,
this is already a massive number. So with hindsight, it now seems superfluous to introduce extra
variability by running multiple trials with new populations.

Running the algorithm instead on a single initial population for many more generations would | think I
be equally likely to produce a good result. However one possible modification would be to change |
the way the initial population was generated. Instead of choosing the initial value of a particular

gene randomly for each individual (the random choice being between the limits defined for that

gene), the values could be set to be equidistant from each other so to guarantee an even coverage |
of that dimension / gene in the problem space. For example, with an initial population of 20 |
individuals and a particular gene having a range of -5 to 5, the values would start at -5 and increase |
with an interval of 10/19. -

s ———————— ]

Results

Summary

| took two different approaches to training. The first was to set the problem and see if a solution
could be learned. As this did not seem to be working — the problem appeared to be too “hard” for
the evolutionary algorithm to find a solution in a reasonable timeframe — | then tried breaking the
problem down into the following incremental sub-problems, the idea being that | could include the
successful algorithm from the previous sub-problem in the initial population for the next sub-
problem. My plan was to build up the difficulty in increments, by training the robot to find an
optimum path to a target;

1. Without any energy sinks present.

2. With 1 energy sink present always of the same strength.
3. With 2 energy sinks present always of the same strength.
4. With 2 energy sinks present of different strengths.

In the end the first task was achieved, but tasks 2, 3 and 4 were not. In summary, | cannot be sure
why the training failed for the more complex tasks. Possible reasons are:

o The CTRNN required more nodes for a problem of this complexity. The networks | used had only
enough nodes in order for each input and output signal to have its own node.

» |nadeguate or ineffective pre-processing of input data to suit the learning process. For example,
scaling inputs so that they are all in a similar range (e.g., 0 to 1) might help prevent one factor
dominating the controller. Given that all weights were constrained to being within a single range
{-5 to 5), if one input can have a significantly larger magnitude than others then the learner may
struggle to "dial out” its dominance by adjusting weight values.
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* The problem is too “complex” for an evolutionary algorithm to solve in a reasonable timeframe.
Without reducing the dimensionality or giving the robot more “assistance” the solutions may be
too scarce within the problem space, thus making the probability of the evolutionary algorithm
finding them very low.

* The constraints placed on the CTRNN parameters (values of weights, biases and time constants)

were poorly chosen and there are either no or few solutions within the problem space defined
by thase ranges.

Training results — Target only, no energy sinks
The parameters for the training exercise were as follows:

Landscapes Targets at (4, 4), (-4, -4), (-4, 4), (4, -4), (6, -2), (-6, 2), (10, 0), (-10,0)
| The intention was to represent a variety of directions and distances.
Node constraints | Isolate all nodes except those corresponding to motor inputs and target |
direction. All other nodes do not provide useful information: '
- Target distance. For problems without energy sinks the target distance is not
important. With energy sinks it becomes useful information as relative

distance between target and energy sinks is needed to assess optimum |
path.

Robot forward speed. Irrelevant for all exercises.
- Energy sinks speed, direction and strength. Irrelevant since there are no |
energy sinks.

In addition, all weights representing node self-connections were set to zero (i.e.,
w;; = 0 wherei = j).

The best results after several trains (in which the best CTRNN from the previous train was included in
the initial population for the next train) are illustrated below. In all cases, the robot takes a
reasonably direct path to the target. [Note that the y scale varies on the charts 50 the deviation from
a direct path appears exaggerated in some instances.)

Target (4, 4) Target (-4, -4}

4.5 5
ah ’_,_,-/'"""f'f 5
25
L5

18

Target (-4, 4)
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Target (10, ) Target (-10, 0}

Target [b, -2} Target -5, 2)

3
"
o
e
A

-

Training results — Target and 1 energy sink always of the same strength
The parameters for the training exercise were as follows:

Landscapes e Target (4, 4), Energ{.' sink (2, 2)

e Target (-4, -4), Energy sink (-2, -2)
» Target (4, 4), Energy sink (-2, 2)

s Target (-4, -4), Energy sink (2, 2)

All energy sinks had the same strength of 4. The strength was chosen so that the
sinks had a significant effect on battery depletion given the landscape scale, but
not so significant that the task was always impossible to achieve.

The intention here was to create two scenarios. The first scenario is given by the |

first two landscapes, where an energy sink is directly between the robot and

target, so the optimum path should be to detour around the energy sink.

The second scenario is given by the second two landscapes where the robot is

directly between the energy sink and the target, so the optimum path should be

L a straight line to the target.

Node constraints | Isolate the following nodes:

- Robot forward speed. Irrelevant for all exercises.

- Speed, direction and strength for energy sink 2. Irrelevant since there is no
second energy sink.

In addition, all weights representing node self-connections were set to zero (i.e.,

wi; = 0 wherei=j).

The results after a long period of training are shown below. It seems as though the robot has learnt a
curved path towards the target, which is a "good” path to use when the energy sink is between it
and the target, but it is far from an optimum path in the second scenario when the robot is between
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sink and target. There does appear to be a small difference in the paths used in the two scenarios, in

that the robot deviates slightly more from the straight line path when there is a sink, but the
difference is slight.

Target {4, 4) | 5ink (2, 2) Target(-4, -4} | Sink (-2, -2)

ns

Target (4, 4) | Sink (-2,-2) Target(-4,-4) | Sink {2, 2)

@h
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